Сколько нужно белка для роста мышц Сколько нужно белка для построения 1 кг мышц

  • тренажеры, бодибилдинг – 520-900 ккал/ч;
  • тай-бо — около 800 ккал/ч;
  • качание пресса – 300 ккал/долгий подход;
  • умеренная тренировка на тренажерах – 520 ккал/ч;
  • бодифлекс – 3500 ккал/ч;
  • бокс – 600-1100 ккал/ч.

Как рассчитать базовый обмен веществ?

Базовый (основной) обмен веществ – это то количество энергии, которое необходимо человеку для жизнедеятельности в спокойном состоянии в комфортных условиях.

Данный показатель зависит от пола, возраста, роста и веса человека. Известно, что в молодости скорость обмена веществ выше, чем в более зрелом и пожилом возрасте. А у мужчин скорость метаболизма выше, чем у женщин. Поэтому формула расчета базового обмена веществ для обоих полов будет разной.

В диетологии самой распространенной формулой расчета базового обмена веществ считается формула Миффлина-Сан Жеора. Именно ее мы советуем применять нашим студентам школы диетологии Лары Серебрянской. Выглядит она так:

Для женщин: ВОО = 9,99*вес (кг) + 6,25*рост (см) – 4,92*возраст (год) – 161
Для мужчин: ВОО = 9,99*вес (кг) + 6,25*рост (см) -4,92*возраст (год) + 5

18 проц., сэкономленных вами при переходе на малобелковый рацион, пойдут на укрепление и исцеление вашего организма.

Специфическое динамическое действие пищи

Под специфическим динамическим действием пищи (СДДП) подразумевается усиление обмена веществ после приема пищи по сравнению с уровнем основного обмена. Примерно через 15 – 30 минут после приема пищи происходит повышение обмена энергии, достигая максимума через 3 – 6 часов, и сохраняется в течение10 – 12 часов. Причем различные виды пищи по-разному влияют на это повышение. Жиры незначительно повышают обмен, а иногда и тормозят его. Углеводистая пища повышает его на 10 – 20 проц., а белковая еще больше – до 40 проц.

белковой пищи? Для этого необходимо знать, сколько у взрослого человека расходуется пищевого белка на построение и замену изношенных тканей организма и сколько – на потребление энергии.

Давным-давно Рубнер опытным путем показал, что только 4 проц. общего обмена энергии идут на построение или прирост белка, а следовательно, белком могут быть покрыты. В среднем это будет 30 г белка в день на человека. А в 100 г мяса его 20 г. Прежде чем ответить на вопрос, куда же идет лишний белок, ответим на другой вопрос: что у нас используется в качестве основного «топлива»?

В качестве основного поставщика энергии у нас используется углевод. Упрощенно обозначим его См (Н2О)н. При окислении кислородом См (Н2О)н + мО2 = мСО2 +нН2О мы получаем свободную энергию, которую используем, а также углекислый газ СО2 и воду Н2О, которые легко выводятся из организма.

Молекула белка состоит из азота и углевода NсСм (Н2О)н. Отсюда, если белок использовать в качестве энергетического материала, то от него сначала надо отщепить азот, а затем использовать углевод как топливо, т.е. NсСм (Н2О)н + мО2 = Nс + мСО2 + нН2О.

В отличие от углеводов и жиров, азот в организме не может откладываться про запас и усиленно выводится из организма. Так, после белкового завтрака выводится до 50 процентов поступившего с пищей азота! В этом случае энергозатраты достигают таких размеров, что до 30 – 40 проц. калорийности пищи уходит на расщепление азота и выведение его из организма. А как нам известно, основной орган, выводящий азот из организма, – это почки. Поэтому «сверхплановая» работа быстро изнашивает их.

В результате реакций СДДП происходит не только интенсификация энергообмена и распада аминокислот (белка), но и изменение уровня глюкозы в крови, сдвиги водно-солевого баланса, изменение тонуса сосудов, вовлекаются гормональные системы.

А.Е.Браунштейн обратил внимание, что усвоение и обмен аминокислот (белка) требует значительного количества свободной энергии. На пути прохождения через организм каждый атом азота вызывает распад многих молекул АТФ и неорганического фосфата.

При сопоставлении скоростей синтеза и распада белка, а также кругооборота азота при диетах с низким и высоким содержанием белка, установлено, что при низкобелковой диете интенсивность кругооборота азота снижается на 18 проц. Отсюда видна роль СДДП для построения рациональных диет, а заодно дан ответ любителям мясной пищи, считающим ее поставщиком энергии.

18 проц., сэкономленных вами при переходе на малобелковый рацион, пойдут на укрепление и исцеление вашего организма.

Углеводами называются органические соединения, имеющие в составе два типа функциональных групп: альдегидную, или кетонную, и спиртовую. Другими словами, углеводы – это соединения углерода, водорода и кислорода, причем водород и кислород входят в соотношение 2 : 1, как в воде, отсюда их название.

Животные и человек не синтезируют углеводы. В зеленых листьях при участии хлорофилла и солнечного света осуществляется ряд процессов между поглощением из воздуха двуокиси углерода и впитанной из почвы воды. Конечным продуктом этого процесса, называемого ассимиляцией, или фотосинтезом, является сложная молекула углевода. В ней Природа собрала солнечную энергию в химическую, которая впоследствии освобождается при распаде углевода в организме человека.

МОНОСАХАРИДЫ (простые углеводы) – наиболее простые представители углеводов и при гидролизе не расщепляются до более простых соединений. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза и так далее.

ОЛИГОСАХАРИДЫ – более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Наиболее важны для человека сахароза, мальтоза и лактоза.

ПОЛИСАХАРИДЫ – высокомолекулярные соединения – полимеры, образованные из большого числа моносахаридов. Они делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте. К перевариваемым относят крахмал и гликоген, из вторых для человека важны клетчатка, гемилцеллюлоза и пектиновые вещества.

Моно – и олигосахариды обладают сладким вкусом, в связи с чем их называют «сахарами!». Полисахариды сладким вкусом не обладают. Если сладость раствора сахарозы принимать за 100 проц., то сладость фруктозы 173 проц., глюкозы – 81 проц., мальтозы и галактозы – 32 проц. и лактозы -16 проц.

ГЛЮКОЗА – составная единица, из которой построены все важнейшие полисахариды – гликоген, крахмал и целлюлоза, также входит в состав сахарозы, лактозы и мальтозы. Она быстро всасывается в кровь из желудочно-кишечного тракта, а затем поступает в клетки органов, где вовлекается в процессы биологического окисления. Окисление глюкозы сопряжено с образованием значительных количеств АТФ.

Глюкоза – наиболее легко и быстро усваиваемый источник энергии для человека. Для своего усвоения она требует инсулина. Роль глюкозы особенно велика для центральной нервной системы, где она является главным источником окисления. Она легко превращается в гликоген.

ФРУКТОЗА менее распространена, чем глюкоза, и также быстро окисляется. Часть фруктозы в печени превращается в глюкозу, но для своего усвоения она не требует инсулина. Этим обстоятельством, а также значительно более медленным всасыванием фруктозы сравнительно с глюкозой в кишечнике объясняется лучшая переносимость ее больными сахарным диабетом.

ГАЛАКТОЗА входит в состав молочного сахара (лактозы). В организме человека большая часть ее превращается в печени в глюкозу, а также участвует в построении гемицеллюлозы.

Основными пищевыми источниками глюкозы и фруктозы служат мед, сладкие овощи и фрукты. Глюкоза и фруктоза содержатся во всех плодах. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) – глюкоза. Ягоды отличаются наименьшим содержанием сахарозы. Количество фруктозы и глюкозы в них приблизительно одинаково.

Моносахариды непосредственно окисляются до двуокиси углерода и воды, тогда как белки и жиры окисляются до тех же продуктов через ряд сложных промежуточных процессов. Благодаря вышеуказанным свойствам, моносахариды – самый быстрый и качественный источник энергии для процессов, происходящих в клетке.

САХАРОЗА. Важнейший пищевой источник ее – сахар. Попадая в организм, она под влиянием кислот и энзимов легко разлагается на моносахариды. Но этот процесс возможен, если мы потребляем сырой свекольный или тростниковый сок. Обыкновенный сахар имеет более сложный процесс усвоения.

ЛАКТОЗА (молочный сахар) – основной углевод молока и молочных продуктов. Ее роль весьма значительна в раннем детском возрасте, когда молоко служит основным продуктом питания. При отсутствии или уменьшении фермента лактазы, расщепляющей лактозу до глюкозы и галактозы, в желудочно-кишечном тракте наступает непереносимость молока.

МАЛЬТОЗА (солодовый сахар) – промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде, солоде, пиве, патоке и проросшем зерне.

КРАХМАЛ – важнейший поставщик углеводов. Он образуется и накапливается в хлоропластах зеленых частей растения в форме маленьких зернышек, откуда путем гидролизных процессов переходит в водорастворимые сахара, которые легко переносятся через клеточные мембраны и таким образом попадают в другие части растения, в семена, корни, клубни и другие.

В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается еще во рту. Слюна во рту частично превращает его в мальтозу. Вот почему хорошее пережевывание пищи и смачивание ее слюной имеет исключительно важное значение (помните правило – не пить во время еды). В кишечнике мальтоза гидролизируется до моносахаридов, которые проникают через стенки кишечника. Там они превращаются в фосфаты и в таком виде поступают в кровь. Дальнейший их путь – это путь моносахарида.

А вот о вареном крахмале отзывы у ведущих натуропатов Уокера и Шелтона отрицательны. Вот что говорит Уокер: «Молекула крахмала нерастворима ни в воде, ни в спирте, ни в эфире. Эти нерастворимые частицы крахмала, попадая в систему кровообращения, как бы засоряют кровь, прибавляя в нее своеобразную «крупу». Кровь в процессе циркуляции имеет тенденцию освобождаться от этой крупы, устраивая для нее складное место. Когда потребляется пища, богатая крахмалами, особенно белая мука,

Вопрос о крахмале и его роли в нашем здоровье сейчас основной, вспомните слова Павлова «кусок хлеба насущного . ».

Поэтому со всей тщательностью разберем его. Может, доктор Уокер сгущает краски?

Возьмем учебник для мединститутов «Гигиена питания» (М., Медицина, 1982 г.) К. С. Петровского и В. Д. Воиханена и почитаем раздел о крахмале (стр. 74). «В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Крахмал по химическому строению состоит из большого числа молекул моносахаридов. Сложность строения молекул полисахаридов является причиной их НЕРАСТВОРИМОСТИ. Крахмал обладает только свойством коллоидной растворимости. Ни в одном из обычных растворителей он не растворяется. Изучение коллоидных растворов крахмала показало, что раствор его состоит не из отдельных молекул крахмала, а их первичных частиц – мицелл, включающих большое количество молекул (их Уокер называет «крупой»).

В крахмале находятся две фракции полисахаридов – амилоза и амилопектин, резко различающиеся по свойствам.

Амилозы в крахмале 15 – 25%. Она растворяется в горячей воде (80 С), образуя прозрачный коллоидный раствор. Амилопектин составляет 75 – 85% крахмального зерна. В горячей воде он не растворяется, а лишь подвергается набуханию (требуя для этого жидкость из организма). Таким образом, при воздействии на крахмал горячей воды образуется раствор амилозы, который сгущен набухшим амилопектином. Полученная густая вязкая масса носит название клейстера (эта же картина наблюдается в нашем желудочно- кишечном тракте. И чем из более тонкого помола сделан хлеб и т. д., тем качественнее клейстер. Клейстер забивает микроворсинки 12- перстной и нижележащие отделы тонкой кишки, выключая их из пищеварения. В толстом кишечнике эта масса, обезвоживаясь, «прикипает» к стенке толстой кишки, образуя каловый камень).

Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Крахмал превращается в глюкозу последовательно, через ряд промежуточных образований. Под влиянием ферментов (амилаза, диастаза) и кислот крахмал подвергается гидролизу с образованием дикстринов: сначала крахмал переходит в амилодекстрин, а затем в эритродекстрин, ахродекстрин, мальтодекстрин.

По мере этих превращений повышается степень растворимости в воде. Так, образующийся в начале амилодекстрин растворяется только в горячей, а эримодекстрин – и в холодной воде. Ахродекстрин и мальтодекстрин легко растворяются в любых условиях. Конечным превращением декстринов является образование мальтозы, представляющей собой солодовый сахар, обладающий всеми свойствами дисахаридов, в том числе хорошей растворимостью в воде.

Полученная мальтоза под влиянием ферментов превращается в глюкозу. Действительно, сложно и долго. И этот процесс легко нарушить, неправильно потребляя воду. К тому же совсем недавно ученые установили, что для образования в организме 1000 килокалорий из 250 граммов белка или углеводов должно израсходоваться значительное количество биологически активных веществ, в частности витамина В1 – 0,6 мг, В2 – 0,7, В3 (РР) – 6,6, С – 25 и так далее. То есть, для нормального усвоения пищи нужны витамины и микроэлементы, потому что их действия в организме взаимосвязаны.

Без соблюдения этого условия крахмал бродит, гниет, отравляя нас. Почти каждый ежедневно отхаркивается крахмалистой слизью, которая переполняет наш организм и вызывает бесконечные насморки и простуды. Если же вы, наоборот, будете в дневном рационе употреблять только 20% крахмалистых продуктов (а не 80%) и соблюдать соответственно к ним соотношение биологически активных веществ, вы, наоборот, будете дышать легко и наслаждаться здоровьем.

Если же вы не можете отказаться от термически обработанных крахмалистых продуктов (которые еще труднее усваиваются, чем сырые), то вот вам рекомендации Г. Шелтона: «Более 50 лет в практике гигиенистов было потреблять с крахмалистой пищей большое количество салата из сырых овощей (за исключением помидоров и другой зелени). Такой салат содержит изобилие витаминов и минеральных солей».

Сразу же рассмотрим и другой важный аспект этого вопроса. Какие крахмалистые продукты лучше всего использовать? Мы потребляем очень много хлеба, изготовленного из муки.

МУКА – пищевой продукт, получаемый мелким раздроблением эндосперма зерна хлебных злаков с большей или меньшей примесью его оболочек и зародыша. В итоге химический состав муки значительно отличается от зерна.

Характерной особенностью пшеничной муки является наличие в ней клейковины, образующейся при изготовлении теста и состоящей в основном из белков. От физических свойств клейковины зависит эластичность, пористость и объем хлеба.

А вот что показали исследования А.М.Уголева относительно клейковины. Оказалось, что при употреблении в пищу продуктов, ее содержащих, нарушается нормальная структура щеточной каймы – происходит атрофия микроворсинок. Естественно, при уменьшении микроворсинок уменьшается мощность ферментного слоя и страдает пристеночное пищеварение и всасывание пищевых веществ.

Так начинается САМОЕ ПЕРВОЕ звено в цепи самой разнообразной патологии. Нормализация структуры щеточной каймы происходит после лечения диетой, свободной от клейковины.

Ржаная мука отличается от пшеничной наличием слизей (веществ углеводистой природы), содержит меньше белка, больше сахара, не образует клейковины.

Мука, не образующая клейковины: овсяная, кукурузная, просяная. В качестве использования крахмалистых продуктов рекомендуются крупы: овсяная, пшено, гречневая, рис.

Большое место помимо хлеба в нашем питании отводится картофелю. Ознакомимся с этим продуктом подробнее.

В состав картофеля входит крахмал (18 – 20%). Но в картофеле содержится и ядовитое вещество – соланин. Особенно его много в ботве и ягодах, в позеленевших, загнивших и проросших клубнях, что может вызвать отравление. В зрелых свежих клубнях он содержится в безвредных количествах (но все-таки есть). А вот еще интересные данные.

Картофель молодой (с 1 сентября до 1 января): съедобная часть – 75%, углеводы – 15,8.

Как видно из этого краткого обзора, картофель довольно-таки посредственный продукт, который лучше всего есть максимум до 1 января.

Старайтесь шире в своем питании использовать продукты, содержащие естественную глюкозу, фруктозу и сахарозу. Наибольшее количество сахара содержится в овощах, фруктах и сухофруктах, а также проросшем зерне.

Гидролиз углеводов происходит в ротовой полости и в кишечнике с помощью ферментов поджелудочной железы.

ПИЩЕВЫЕ ВОЛОКНА (целлюлоза, клетчатка, геми-целлюлоза и пектиновые вещества); другое их название – устаревшее балластные вещества, широко распространены в растительных тканях. Их роль сводится к

а) формирование гелеобразных структур, что влияет на опорожнение желудка, скорость всасывания в тонкой кишке и время транзита через желудочно-кишечный тракт;

б) способность пищевых волокон удерживать воду (предотвращает образование каловых камней), меняет давление в полости органов пищеварительной системы, электролитный состав и массу фекалиев, увеличивая их вес;

в) способность волокон адсорбировать желчные кислоты и таким образом влиять на их распределение вдоль желудочно-кишечного тракта и обратное всасывание их, что существенно отражается на потере стероидов с калом и обмене холестерина в целом. При увеличении количества пищевых волокон в рационе снижается уровень холестерина в крови. Это связано с участием пищевых волокон в кругообороте желчных кислот. При отсутствии поступления пищевых волокон нарушается не только обмен желчных кислот (отсюда понижение гемоглобина в крови), но и холестерина и стероидных гормонов;

г) большое значение для электролитического обмена в организме и в желудочно-кишечном тракте имеют катионообменные свойства кислых полисахаридов, антиоксидантный (противоокислительный) эффект лингина;

д) влияние пищевых волокон на среду обитания бактерий в кишечнике. Переваривание 50% пищевых волокон, поступающих в кишечник, реализуется микрофлорой толстой кишки. Пищевые волокна нужны для нормального функционирования не только пищеварительной системы, но и всего организма;

е) отсутствие пищевых волокон в диете может провоцировать рак толстой кишки и других отделов кишечника. Показан также антитоксический эффект растительных волокон. Они способны адсорбировать и выводить из организма различные соединения, в том числе экзо- и эндогенные токсины, тяжелые металлы;

ж) атеросклероз, гипертония, диабет – недостаток пищевых волокон. В ряде стран интенсивно вводят в пищевую промышленность пищевые волокна.

Условно пищевые волокна можно разделить на нежные (картофель, капуста, яблоки, абрикосы и другие подобные продукты), которые расщепляются и достаточно полно усваиваются, и на грубые (морковь, свекла и другие) – менее усваиваемые. Но когда пищеварительный тракт войдет в нужную силу, и они будут прекрасно усваиваться.

Наиболее сильное изменение с пищевыми волокнами происходит в толстом кишечнике под влиянием бактериальной флоры.

Термин «жиры» подразумевает вещества, состоящие из глицерина и жирных кислот, соединенных эфирными связями.

В более доступной для нас терминологии – это вещества, в состав которых входит углерод, водород и кислород. По насыщенности жирными кислотами они делятся на две большие группы: твердые жиры (сало, смалец, сливочное масло), которые содержат насыщенные жирные кислоты, и жидкие жиры (масло подсолнечное, оливковое, из орехов, из косточек и так далее), содержащие в основном ненасыщенные жирные кислоты.

Полинасыщенные жирные кислоты: линолевая, линоленовая и арахидоновая – относятся к незаменимым факторам питания, так как в организме они не синтезируются и потому должны поступать с пищей. Эти кислоты по своим биологическим свойствам относятся к жизненно необходимым веществам и даже рассматриваются как витамины (витамин F).

Физиологическая роль и биологическое значение этих кислот многообразны. Важнейшие биологические свойства ненасыщенных данных кислот – участие их в качестве структурных элементов в таких высокоактивных комплексах, как фосфолипиды, липопротеиды и другие. Они необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и других.

Арахидоновая кислота предшествует образованию веществ, участвующих в регуляции многих процессов жизнедеятельности тромбоцитов и других, но особенно простагландинов, которым придают большое значение как веществам высочайшей биологической активности. Простагландины обладают гормоноподобным действием, в связи с чем получили название «гормонов тканей», т.к. они синтезируются непосредственно из фосфолипидов мембран. Синтез простагландинов зависит от обеспечения организмом этих кислот.

Установлена связь ненасыщенных жирных кислот с обменом холестерина. Они способствуют быстрому преобразованию холестерина в фолиевые кислоты и выведению их из организма.

Ненасыщенные жирные кислоты оказывают нормализующее действие на стенки кровеносных сосудов, повышают их эластичность и снижают проницаемость.

При дефиците ненасыщенных жирных кислот снижается интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, недостаточность ненасыщенных жирных кислот оказывает влияние на сократительную способность миокарда, вызывает поражение кожи.

Жиры содержат жирорастворимые витамины. Животные жиры поставляют витамины A и D, растительные – E.

Растительные жиры имеют высокое энергетическое состояние, т.е. образуются при фотосинтезе в зеленых частях растений и после этого откладываются в плодах и семенах. При своем расщеплении они освобождают (1 г – 9 ккал) вдвое больше энергии, чем белки и углеводы.

Масло орехов является источником хорошо усваиваемых эмульгированных жиров. Если есть достаточно орехов, нет необходимости добавлять в рацион какие-либо масла.

Масло же желательно применять полученное холодным прессованием. Рафинированное масло, лишенное микроэлементов и витаминов, надо исключить. К тому же в полученном масле – ненасыщенные жирные кислоты легко окисляются, в масле накапливаются окисленные продукты, которые ведут к его порче.

Животные жиры содержат токсические включения, которые при расщеплении попадают в организм. Ведь жировая ткань как животных, так и человека является «отстойником», так как в ней наименьший обмен веществ. По этой причине организм, чтобы освободиться от токсинов, откладывает их в жировую ткань, где они «хоронятся».

Дневная норма в жировых продуктах удовлетворяется 25 – 30 г растительного или сливочного масла.

Витаминами называются низкомолекулярные соединения органической природы, не синтезируемые в организме человека, поступающие извне, в составе пищи, не обладающие энергетическими и пластическими свойствами, проявляющие биологическое действие в малых дозах.

Витамины образуются путем биосинтеза в растительных клетках и тканях. Большинство из них связано с белковыми носителями. Обычно в растениях они находятся не в активной, но высокоорганизованной форме и, по данным исследований, в самой подходящей форме для использования организмом, а именно – в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.

Недостаток витаминов вызывает тяжелые расстройства. Мной систематизированы основные виды витаминной недостаточности (см. конец этого раздела, табл.1).

Скрытые формы витаминной недостаточности не имеют каких-либовнешних проявлений и симптомов, но оказывают отрицательное влияние на работоспособность, общий тонус организма и его устойчивость к разным неблагоприятным факторам. Удлиняется период выздоровления после перенесенных заболеваний, а также возможны различные осложнения.

В основу классификации витаминов положен принцип растворимости их в воде и жире, в связи с чем они делятся на две большие группы – водорастворимые и жирорастворимые.

Водорастворимые витамины участвуют в структуре и функционировании ферментов.

Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

* Номер регистрационного удостоверения средства Микразим ® (капсулы) в Государственном реестре лекарственных средств — ЛС-000995, дата регистрации — 18 октября 2011 года [3] .

Как меняется норма потребления калорий?

Частично эту тему мы уже затронули, рассказав, сколько калорий употреблять в зависимости от возраста. Кроме того, на норму потребления калорий влияет время года. Диетологи отмечают, что с наступлением зимы человек ежедневно потребляет на 6% калорий больше. И это физиологически обосновано, ведь организму необходимо вырабатывать больше тепла, следовательно, энергозатраты растут.

Конечно, рацион меняется и в зависимости от ваших целей. Так, норма калорий для похудения рассчитывается следующим образом: определите по формуле Харриса-Бенедикта, сколько калорий вам нужно в сутки, и отнимите от полученной цифры 500. Это позволит создать дефицит калорий для здорового похудения. При приготовлении еды важно учитывать общую энергетическую ценность блюда — в интернете можно найти множество калькуляторов-помощников с обширной базой калорийности продуктов. Специалисты предупреждают, что садиться на жесткие диеты в зимние месяцы не следует: нехватка витаминов и нутриентов может стать причиной ослабления иммунитета и, как результат, частых простудных заболеваний.

Резкое и значительное сокращение ежедневной калорийности, особенно если при этом вы занимаетесь в спортзале, может привести к проблемам сердечно-сосудистой системы, ухудшению иммунитета, гормональному сбою.

Если цель — набор мышечной массы, внимательно следить за калорийностью пищи также нужно: полученных с пищей калорий должно быть на 20% больше, чем затраченных на усердную тренировку.

Питание с учетом нормы калорий — это залог хорошего самочувствия и красивой фигуры. Когда калорий недостаточно, организм включает «экономный режим», что вызывает недомогание, слабость, головокружение. При превышении нормы непереработанная энергия откладывается в виде жировых запасов, а из-за повышенной нагрузки на ЖКТ человек может испытывать различные неприятные симптомы. Однако каждый из нас хотя бы периодически «грешит» перееданием или балует себя вкусной, но вредной пищей. Единичные случаи превышения нормы калорий не страшны, особенно учитывая, что фармацевтический рынок предлагает средства для улучшения пищеварения.

Таблица 7.2. Потребление энергии и пищи женщинами в зависимости от уровня жира в диете (по: Pi-Sunyer, 1990)

7.2 Специфическое динамическое действие пищи и объясняющие его теории

Прежде чем охарактеризовать СДД пищи, следует сказать несколько слов об основном обмене. Под основным обменом понимается некоторый минимальный, свойственный данному организму уровень обмена, который отражает энергию, расходуемую на метаболические процессы, кровообращение, внешнее дыхание, обновление структур и т. д. в состоянии покоя. По-видимому, понятие основного обмена справедливо только для высших организмов с их совершенным гомеостазом. Основной обмен, который клиницисты уже давно оценили как один из важных показателей нормального или патологического состояния организма и разработали соответствующие стандарты при его определении, с нашей точки зрения является также суммарным показателем работы гомеостатирующих механизмов. Это дает нам право модернизировать классическое определение основного обмена, охарактеризовав его как уровень энергетических затрат, связанных с поддержанием гомеостаза (Уголев, 1978).

Следует заметить, что основной обмен может меняться под влиянием экстремальных воздействий, при патологии, в зависимости от функционального состояния организма. Основной обмен зависит также от возраста человека, его пола, массы тела, физической активности (табл. 7.1).

Таблица 7.1. Основной обмен для взрослого населения СССР в зависимости от пола, массы тела и возраста(по: Гаппаров, 1989)

При оценке потребностей человека в энергии следует учитывать количество метаболизированной энергии из потребляемой пищи (обзор: Гаппаров, 1989). Состав пищи оказывает существенный эффект на энерготраты организма. В качестве примера можно привести данные (Pi-Sunyer, 1990), свидетельствующие, что уровень жира в пище значительно влияет на потребление энергии (табл. 7.2).

Таблица 7.2. Потребление энергии и пищи женщинами в зависимости от уровня жира в диете (по: Pi-Sunyer, 1990)

Феномен СДД пищи, привлекающий пристальное внимание физиологов и клиницистов, был открыт более 100 лет тому назад. (Эта проблема подробно освещена в ряде наших обзоров: Уголев, 1978, 1985.) Под СДД подразумевается интенсификация обмена веществ после приема пищи человеком и высшими животными по сравнению с уровнем их основного обмена. Так, у человека повышение энергетического обмена происходит уже через 15–30 мин после приема пищи, достигает максимума через 3–6 ч и сохраняется в течение 10–12 ч. Наиболее выражено СДД после белковой пищи (повышение обмена достигает 40 %), углеводы вызывают существенно меньший эффект. Сходные данные получены на животных. Жиры в отличие от белков и углеводов незначительно повышают обмен по сравнению с основным, а иногда тормозят его. СДД пищи не ограничено лишь повышением энерготрат организма, но связано с выведением значительных количеств белкового азота с мочой.

Для обозначения СДД пищи нередко используются и другие термины: постпрандиальные эффекты, влияние пищи на основной обмен и т. д. В зарубежной литературе широкое распространение получило понятие термического пищевого эффекта. Однако, с нашей точки зрения, этот термин не вполне удачен, так как в действительности после приема пищи имеет место не только повышение энергетического обмена, но и усиление азотистого и углеводного обмена, изменение водно-солевого обмена, тонуса сосудов, функционального состояния различных эндокринных желез и т. д. По-видимому, так называемый пищевой лейкоцитоз и изменение уровня пищевого возбуждения также являются компонентами СДД пищи, так как отражают интегральную реакцию перехода организма от голодного состояния к сытому.

Как отмечено выше, усиление энергетического обмена, являющееся одним из наиболее типичных и, вероятно, важных признаков СДД пищи, оставляет в тени сложность ответной реакции организма на поступление пищевых веществ, что повлияло на интерпретацию механизмов этого феномена.

В последние десятилетия интерес к СДД пищи резко возрос. Было обнаружено, что между ожирением и, следовательно, комплексом заболеваний, связанных с превышением веса, с одной стороны, и ослаблением или исчезновением СДД пищи — с другой, существует определенная связь. С этими наблюдениями перекликаются данные, свидетельствующие, что связь наблюдается также между СДД пищи и аппетитом. (Для справки см.: Уголев и др., 1989; см. также гл. 8.).

Позволим себе сделать небольшой исторический экскурс, который даст возможность лучше понять как противоречия, так и развитие этой проблемы. Итак, существует несколько теорий СДД пищи. Исторически наиболее старой является теория энергетической стоимости переработки и всасывания пищи К. Цунца и Ф. Меринга (Zunz, Mering, 1883). Согласно этой теории, повышение обмена веществ после приема пищи возникает в результате усиленной работы желудочно-кишечного тракта при ere переваривании и всасывании. Однако уже в 1885 г. расчеты К. Фойта показали, что энергетические затраты на переработку и усвоение пищи составляют лишь небольшую часть ее СДД. Кроме того, известно, что жиры, как и белки, требуют значительной активности пищеварительного аппарата, но в отличие от белков не вызывают СДД.

В 1902 г. И. Рубнер (М. Rubner) предложил теорию, позднее развитую Г. Лэском (Lusk, 1931) и многими другими, которую можно было бы назвать пострезорбционной. В соответствии с ней повышение обмена веществ обусловлено прямым действием резорбированных веществ, в особенности аминокислот, на соматические клетки организма. Возникновение этой теории относилось к периоду, когда еще не существовало развитых представлений о механизмах азотистого обмена. Однако уже в то время было обнаружено, что аминокислоты при их потреблении или парентеральном введении способны повышать основной обмен. Возникает вопрос, каким образом аминокислоты стимулируют обмен? В 1957 г. пострезорбционные эффекты поглощенных пищевых веществ получили новую интерпретацию в исследованиях одного из крупнейших современных биохимиков А. Е. Браунштейна. А. Е. Браунштейн связывал возникновение СДД пищи с тем, что ассимиляция, интермедиарный обмен аминокислот, синтез пептидных связей и некоторые этапы катаболической стадии азотистого обмена требуют значительных затрат АТФ с образованием АДФ и неорганического фосфата, стимулирующих процессы клеточного дыхания. Показано также усиленное потребление кислорода и выделение углекислого газа после внутривенного введения смеси аминокислот не только мышцами, но также кишечником и другими внутренними органами.

В 1896 г. в лаборатории И. П. Павлова Н. В. Рязанцев обнаружил некоторые эффекты пищи, коренным образом изменившие представления об ее СДД. Он показал, что при мнимом кормлении собак, когда съедаемая пища вываливается через перерезанный пищевод (и, следовательно, все эффекты присутствия пищевых веществ исключаются), СДД тем не менее сохраняется. В этих работах описано многочасовое усиление азотистого обмена, тестируемого по выделению мочевины почками. На основании этих результатов И. П. Павлов и Н. В. Рязанцев сделали вывод, что СДД пищи является рефлекторным ответом на акт еды. Эта гипотеза намного опередила свое время и в течение длительного времени не комментировалась.

В 40-50-х годах в работах, проведенных главным образом в лабораториях, руководимых К. М. Быковым, А. Д. Слонимом и Р. П. Ольнянской, на человеке и животных было показано, что один лишь акт еды (без поступления пищи для ее дальнейшей переработки и всасывания) вызывает существенное повышение энергетического обмена, изменение уровня глюкозы в крови и т. д. (обзоры: Слоним, 1952; Ольнянская, 1964). Эти данные не оставляли сомнений, что СДД пищи содержит рефлекторный компонент, обусловленный раздражением рецепторов полости рта при еде. В экспериментах на собаках продемонстрировано, что рефлекторный компонент составляет несколько более 50 % от СДД пищи, развивающегося после истинного кормления. Если у одного и того же животного исследовать СДД пищи при истинном и мнимом кормлении и при вкладывании мяса в желудок, то сумма эффектов от мнимого кормления мясом и от его вкладывания в желудок близка к СДД при истинном кормлении.

В этих же лабораториях было обнаружено, что при повторении мнимого кормления у одной и той же собаки остается неизменной стимуляция желудочной секреции, но постепенно снижается и исчезает СДД пищи. На основании этих результатов был сделан справедливый вывод, что акт еды возбуждает желудочную секрецию в порядке врожденного безусловного рефлекса, тогда как оральный компонент СДД представляет собой, по-видимому, натуральный условный рефлекс. Однако и в то время и позднее оставалось неясным, на базе каких безусловных реакций формируются натуральные рефлексы, играющие столь важную роль в реализации СДД пищи.

Для понимания физиологической роли СДД пищи и его механизмов следует учитывать, что прием пищи сопровождается не только интенсификацией энергетического обмена и катаболизма аминокислот. Как отмечено выше, разными авторами обнаружены изменения уровня глюкозы в крови, сдвиги водно-солевого баланса, изменения тонуса сосудов и др. Существуют многочисленные исследования, показывающие, что в комплекс реакций, обозначаемых как СДД пищи, вовлекаются, в частности, симпатико-адреналовая система, гипоталамус и щитовидная железа (обзор: Уголев, 1978).

Мы уже отмечали, что СДД пищи отражает не только дополнительные расходы, необходимые для переработки и усвоения ее определенного количества. Возможно, кроме того, одной из «задач» СДД пищи является авторегуляция энергетических и пластических резервов организма. Вероятно, благодаря СДД пищи сжигается избыток калорий. В пользу такого предположения свидетельствует снижение СДД пищи у людей, склонных к ожирению. В 1976 г. А. И. Клиорин обнаружил эту важную закономерность у детей.

Ответ на многие нерешенные вопросы о механизме развития СДД пищи и его физиологическом значении пришел в связи с изучением функций кишечной гормональной системы. Стало понятно, что СДД пищи отражает некоторые важные эффекты регуляторного потока, стимулируемого ее поступлением.

Одни можно использовать только до и после тренировки, другие – употреблять утром или перед сном, а также во время перекусов.

Сколько грамм белка нужно в день для набора мышечной массы

Для построения 1000 г мышц требуется в среднем 200 г белка. Протеина, идентичного человеческому, который на 1/3 состоит из незаменимых аминокислот, не существует. Поэтому количество белка нужно увеличить до 300-350 г.

Если в среднем на неделю требуется 350 г, то в день нужно потреблять не больше 50 г.

Белок в организме человека представлен в виде молекул, которые составляют мышечные волокна. Эти молекулы состоят из еще более мелких «кирпичиков» — аминокислот. Они бывают заменимыми и незаменимыми. Первые (глютамин, аланин, аргинин, глицин и другие) вырабатываются в организме, но при повышенных нагрузках быстро расходуются. Незаменимые аминокислоты (лизин, лейцин, валин, изолейцин и т. д.) можно получить только извне с пищей или спортивной добавкой.

Сколько грамм белка в сутки нужно употреблять для набора мышечной массы?

Людям, которые хотят набрать вес, необходимо употреблять достаточное количество белка. Это важно не только для набора мышечной массы, но и для похудения, ведь мышцы отвечают за качество тела человека. К тому же на их “содержание” тратится много энергии.

Ирина Пегова шокировала всех рецептом похудения: “Скинула 27 кг и продолжаю худеть, просто на ночь завариваю. ” Читать подробнее >>

Мышцы нуждаются в достаточном количестве строительного материала — белка. В противном случае они не будут расти и даже начнут разрушаться. Но если сильно превысить необходимую суточную норму, можно столкнуться с нарушениями в работе почек и печени. Поэтому важно правильно рассчитать, сколько граммов белка нужно употреблять конкретному человеку.

Белки необходимы для строительства мышц и других тканей (ногтей, волос и т. д.). К тому же они обеспечивают процесс обмена веществ, а также используются в качестве сигнала, который передается между клетками.

  • каталитическая — ускоряют процессы, протекающие в организме;
  • защитная — обеспечивают работу иммунной системы и участвуют в создании антител;
  • структурная — являются неотъемлемыми компонентами клеток живого организма;
  • гормональная — белки-гормоны позволяют сохранять устойчивость гормональной системы;
  • транспортная — помогают доставлять различные вещества и компоненты к органам (например, гемоглобин ответственен за транспортировку кислорода);
  • питательная — используются в качестве резерва на случай голодания;
  • сократительная — благодаря белковым структурам мышцы способны напрягаться и расслабляться.

Белок в организме человека представлен в виде молекул, которые составляют мышечные волокна. Эти молекулы состоят из еще более мелких «кирпичиков» — аминокислот. Они бывают заменимыми и незаменимыми. Первые (глютамин, аланин, аргинин, глицин и другие) вырабатываются в организме, но при повышенных нагрузках быстро расходуются. Незаменимые аминокислоты (лизин, лейцин, валин, изолейцин и т. д.) можно получить только извне с пищей или спортивной добавкой.

Больше всего белка содержится в таких продуктах, как мясо, рыба, яйца, творог. К тому же можно употреблять спортпит. В частности, протеин или гейнер, в состав которых входит до 30 г белка. Отдельные незаменимые аминокислоты (лейцин, валин и изолейцин) можно получить, принимая такую добавку, как BCAA.

Если употреблять недостаточное количество аминокислот, рост мышц будет ограничен, так как волокнам будет буквально не из чего строиться. Поэтому, чтобы тренировки на набор мышечной массы не были напрасными, нужно обязательно следить, хватает ли организму белка.

Употреблять достаточное количество белка нужно как мужчинам, так и женщинам. Девушки иногда боятся это делать и стараются свести к минимуму потребление белковой пищи. Но сам по себе белок не может нарастить мышцы. Они разрушаются на тренировке. Если белка недостаточно, то мышечные волокна не восстановятся, и качество тела будет плохим.

1,1 грамм белка на 1 килограмм веса нужно потреблять для роста мышечной массы.

Сколько нужно белка на 1 кг веса?

Итак, белок это “строительный материал” для нашего организма. Попадая в организм он расщепляется на аминокислоты, которые уже поступают в кровь. В процессе расщепления в организме образуются побочные продукты: аммиак, углекислый газ и вода. Всё это “добро” частично обезвреживается в печени, превращается в мочевину и выводиться из организма через почки.

При оптимальном потреблении белка, вашим почкам ничего не будет, но если есть 2,3 или 4 грамма на 1 кг веса в день, то можно получить заболевания фильтрующих органов. Если же у вас почечная недостаточность, то столько белка потреблять просто запрещено.

Буквально недавно ученые доказали, что у здорового человека усваивается 0,7-0,9 грамм белка на килограмм веса. Всё остальное выводится из организма и наносит вред почкам и печени. Иными словами, поедать белок “килограммами” просто нет смысла и вредно для здоровья.

Оцените статью
Добавить комментарий